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Abstract. Much progress can be made in studying the mechanical stability of frameworks
when they are treated as generic, which lack any special symmetries. This is because testing for
rigidity becomes topological in nature rather than geometrical. Generic rigidity, synonymous
with graph rigidity, depends only on the connectivity of the network, making it a simpler
problem to deal with in principle. A complete combinatorial constraint counting characterization
of graph rigidity is given by Laman’s theorem for two dimensions. Unfortunately there is no
known corresponding theorem for three dimensions. Herein it is proposed that the theorem
of Laman generalizes to three dimensions forbar-joint networks that have no implied-hinge
joints. Particular attention is given tobond-bending networks, having a truss structure with
constraints between nearest and next-nearest neighbours, that are suitable for modelling many
covalent network glasses and macromolecules. It is shown that implied-hinge joints do not exist
in bond-bending networks. Based on the proposition that an all subgraph constraint counting
characterization of generic rigidity is recovered in three-dimensional bar-joint networks having
no implied hinge joints, an efficient combinatorial algorithm is constructed for bond-bending
networks. Complete agreement is found with exact calculations involving diagonalization of
dynamical matrices, for systems up to 103 degrees of freedom.

1. Introduction

In the rich history of graph theory many important developments [1] have been made
through interdisciplinary research. In this spirit, I show that combinatorial constraint
counting is sufficient to completely characterize generic rigidity within a certain class of
three-dimensional bar-joint frameworks. In particular, proposition 4.9 states that a generic
bond-bending network in three dimensions withN sites andC constraints does not have
a redundant bond if no subsection of the network containingn sites andc constraints
violatesc 6 3n− 6. The importance of this work is two-fold. First, it advances the graph-
theoretic understanding of graph rigidity on bar-joint frameworks in three dimensions. The
approach used here is distinctly different from a body-bar multigraph description [2] of
generic rigidity. Second, this work has been motivated by the desire to efficiently study the
mechanical stability in real covalent network glasses [3–6] and macromolecules [7–10].

Many glass networks and macromolecules have strong covalent bonding forces that
define bond lengths between all pairs of atoms and bond angles between all triples of
atoms. The covalent bonding is modelled as hard rigid constraints between neighbouring
pairs of atoms (central forces) and between next-nearest neighbour pairs of atoms (bending
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forces). By neglecting all other weaker forces, one obtains a bond-bending network that
is essentially a molecular truss structure that may be flexible with floppy motions through
the dihedral-angle degrees of freedom. The bond-bending model gives a natural cut-off in
identifying rigid molecular clusters having strong intra- and weak inter-atomic interactions.
This approach has been successful in characterizing covalent network glasses as being either
an amorphous solid or a polymeric glass [11, 12].

Some properties of network rigidity that are of interest include the number of
independent degrees of freedom or floppy modes [13], the rigid cluster decomposition [14–
16] and the identification of overconstrained (internally stressed) regions [16–18]. These
properties are generally very difficult to calculate [19, 20] on large networks because rigidity
depends on geometry in a nonlocal way [21]. Analysing network rigidity can also be used
in conjunction with other numerical applications. For example, it is possible to study many
systems more efficiently using molecular dynamics of weakly interacting coupled rigid
bodies. This strategy is being incorporated in molecular dynamics simulation of protein
folding [7, 8, 10]. However, it is generally calculationally more expensive to identify the
rigid clusters and independent degrees of freedom than the calculational expense that would
be saved using the rigidity information. For these advanced molecular dynamic simulation
techniques to be implemented successfully on more challenging networks beyond tree-like
topologies, an exact algorithm must be developed to identify network rigidity that is orders
of magnitude faster than current available numerical algorithms [9, 20].

Recently [14] it has been appreciated that network glasses and macromolecules are well
suited to be modelled as generic networks. Within generic networks, algebraic dependences
that lead to geometrical singularities [21–23] are eliminated. This simplifies the problem
to one of graph rigidity [23] involving only the network connectivity. Nevertheless, the
properties ofgeneric rigidity, taken here to be synonymous with graph rigidity, are still
difficult to calculate because of the inherent long-range nature of rigidity.

The theorem of Laman [24] (stated in section 2.1) gives a complete graph-theoretic
characterization of generic rigidity in two dimensions. This proved to be of tremendous
calculational value [16, 18] in the study of generic rigidity percolation in two dimensions
[14, 15, 17]. However, one is faced with the unfortunate situation that there is currently
no known graph-theoretic characterization of generic rigidity [23, 25] for a general graph
in three dimensions. Therefore, the development of anexact and efficient algorithm for
testing generic rigidity in bar-joint networks is at the same juncture as finding a complete
graph-theoretic characterization.

Progress has been made on both these fronts for bond-bending networks by taking
advantage of special properties that are discussed in section 4 following a general
background on generic rigidity in section 2, and after it is argued in section 3 that Laman’s
theorem can be generalized to bar-joint frameworks having no implied-hinge joints. These
results can be used to construct a combinatorial constraint counting algorithm for bond-
bending networks similar to the two-dimensionalpebble game[16]. In section 5 a short
discussion is given on how these results compare with other approaches and about the type
of extensions that can possibly be made from the graph-theoretic developments given here.
A conclusion is then given in section 6.

2. Generic rigidity

Only the basic concepts of graph rigidity are introduced here, while leaving the details to be
found elsewhere [2, 22, 23, 25–27]. The structure of a network will be described as a graph
G(V,E) consisting of a set of vertices,V , and a set of edgesE. The vertices correspond
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to atoms and the edges correspond to central-force bonds and possibly bond-bending force
constraints. Each edge,e, connects a pair of vertices(vi, vj ). An edge is said to be incident
to vertexvi if it connects vertexvi to some other vertexvj . Within graphG(V,E), let
G′(V ′, E′) be a subgraph defined by a set of vertices,V ′, consisting of a set of edges,E′,
that are incident to only those vertices.

A framework,p(G), is a realization of the graphG through the mappingp : V → R3

which assigns each vertex to a point in three-dimensional space [16, 18, 22]. The set of
generic realizations is dense in the space of all realizations, and almost all realizations are
generic. As an example of a generic realization, it is sufficient to consider the coordinates of
all vertices to be algebraically independent over the rationals. However, all that is necessary
is to avoid some specific algebraic dependences.

The basic question of interest is to find the sections of a framework that can be flexed
while keeping all edge lengths unchanged. A finite flexing of a frameworkp(G) is a
continuous family of realizations ofG, such that the position,ri , of each vertexvi , is a
differentiable function of time,t . There is a set of constraints imposed on each realization
of the form |ri(t) − rj (t)|2 = constant for everye ∈ E. Differentiating the edge length
constraints with respect to time, it follows that

(ui − uj ) · (ri − rj ) = 0 for everye ∈ E (1)

where ui is the instantaneous velocity of vertexvi . More generally, an assignment of
velocities that satisfies equation (1) for a single realization defines aninfinitesimal motion
for the framework. The existence of a finite flexing implies an infinitesimal motion, but the
converse is not always true. However, each infinitesimal motion does correspond to a finite
flexing [22, 27] in a generic realization.

A matrix can be constructed from the entire set of equations of the form of equation (1).
This matrix, consisting of|E| rows and 3|V | columns (in three dimensions), is called a
rigidity matrix [22] where each row corresponds to an edge and each column corresponds
to a coordinate of a vertex. For each edgee, its corresponding row has only six non-
zero elements corresponding to the difference in the coordinate values of its two associated
incident vertices. The construction of this matrix is useful, because linear algebra can
be used to determine the number of rows that are linearly independent by obtaining its
rank. For a generic realization, the rank is maximal because there is no special algebraic
dependencies [18, 22, 28].

The rigidity matrix is introduced here for the purpose of defining a redundant edge.
Alternatively, a dynamical matrix could have been used for the same purpose [12], and it
turns out that the two approaches are closely related [28].

Definition 2.1.A redundant edgeis an edge for which if removed from the framework, the
rank of the rigidity matrix does not change.

Conversely, an edge is independent if upon removal from the framework, the rank of the
rigidity matrix decreases. Because we are considering only generic realizations the network
rigidity becomes a property of the underlying graph by the following theorem [26].

Theorem 2.2.If a graph has a single infinitesimally rigid realization, then all its generic
realizations are rigid.

As a result, one can speak about characterizing generic rigidity of a graph, which formally
corresponds to characterizing rigidity of the typical behaviour of a framework, without
reference to a specific realization. Two observations are made below which follow from the
above discussion.
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Figure 1. Four example graphs that are embedded in three dimensions. (a) Vertex 3 is apivot
joint. (b) The vertex pairs(2, 4), (2, 5) and(4, 5) arehinge joints. (c) The vertex pair(1, 5) is
an implied edge. (d) The vertex pair(1, 5) is an implied-hinge joint.

Observation 2.3.A set of two or more vertices in a generic framework are mutually rigid
when the distance between all pairs of these vertices is constant for all possible continuous
motions of the framework.

Observation 2.4.Let V1 andV2 define two distinct sets of mutually rigid vertices. IfV1∩V2

contains three or more vertices, then the vertices in setV3 = V1 ∪ V2 are mutually rigid.

Observation 2.3 is treated formally using the properties of the rigidity matrix [22, 23],
and observation 2.4 is part of the generic gluing lemma [25]. Some basic definitions are
given below which will be needed in later sections.

Definition 2.5.A rigid cluster is a subgraphG′(V ′, E′) having vertices,V ′, that are mutually
rigid within graphG(V,E) such that no other vertex,v ∈ V ′, is mutually rigid with respect
to all V ′ vertices for|V ′| 6 3 or any three vertices for|V ′| > 3.

The graphG will generally consist of rigid clusters that are connected and disconnected.
In three dimensions the connected rigid clusters can share only three types of floppy elements
between themselves, which need to be classified. The most floppy of these elements is the
pivot joint acting between two rigid clusters.

Definition 2.6.A pivot joint is formed at vertexv when it is the only vertex common to
any two rigid clusters.

For example, the centre vertex in the ‘bow-tie’ graph of figure 1(a) is a pivot joint
between two rigid triangles. Three degrees of freedom are generally required to specify
the relative orientation between two rigid clusters, each of three or more vertices, that are
connected by a pivot joint.



Generic rigidity in bond-bending networks 6657

Definition 2.7.A hinge joint is formed at edgee when it is the only edge common to any
two rigid clusters.

Specifying the relative orientation of two rigid clusters connected by a hinge joint
requires one degree of freedom, corresponding to a dihedral angle. In figure 1(b) the edges
between the pairs of vertices(2, 4), (2, 5) and (4, 5) are examples of hinge joints. Since
two distinct rigid clusters cannot share more than two vertices by observation 2.4, there
cannot be a less floppy element between two rigid clusters than a hinge joint. However,
there is a variant to the hinge joint, which derives from an implied edge.

Definition 2.8.An implied edgeis formed between any pair of vertices(v′1, v
′
2) within a

rigid cluster,G′(V ′, E′), that does not have an edge between the verticesv′1 andv′2.

By observation 2.3 there is a fixed distance between each pair of vertices within a rigid
cluster. The physically imposed distance constraints are represented by the edges in set
E. All other pairs of vertices within a rigid cluster form implied edges, such as between
vertices(1, 5) shown in figure 1(c).

Definition 2.9.An implied-hinge jointis formed when any two rigid clusters share only two
verticesv1 andv2 without a common edge connecting(v1, v2).

An implied-hinge joint is formed between the pair of vertices(1, 5) within the ‘double
banana’ graph shown in figure 1(d). Effectively implied-hinge joints act like regular hinges,
but as will be seen they make the graph-theoretic characterization of generic rigidity in three
dimensions difficult.

2.1. Constraint counting

Clearly subgraphs with many edges are more likely to be rigid than those with only a few,
since the edges are constraining the possible movements of the vertices. It is expected
that as long as the edges are uniformly randomly distributed throughout the network, the
number of independent degrees of freedom will decrease as the number of edges increases.
The number of independent degrees of freedom or floppy modes,F , in a network can be
estimated by constraint counting [12, 13]. The approximation is given byF ≈ 3N − C
whereN is the total number of vertices andC is the total number of edges (constraints).
However, because not all the constraints are independent this estimate serves as a lower
bound. It is well known [22, 23, 25] that ind-dimensions there need not be more than
dn − d(d + 1)/2 constraints to make a set ofn > d vertices mutually rigid or more than
n(n − 1)/2 constraints for a set ofn < d vertices. Otherwise, the number of excess
constraints amongn sites are redundant.

By counting the number of constraints between all possible combinations of sites in the
network, one can hope to identify every redundant constraint. Each rigid region can then
be identified whenever there are just enoughindependent constraintsdistributed among a
set of sites to make them mutually rigid. In two dimensions this logic is correct as stated
by Laman’s theorem [24, 29].

Theorem 2.10.The edges of a graph,G(V,E), are independent in two dimensions if and
only if no subgraph,G′(V ′, E′) has more than 2|V ′| − 3 edges.

The essence of theorem 2.10 is that in two dimensions, generic rigidity is completely
characterized by applying constraint counting to all possible combinations of sites. In other
words, constraint counting must be done on all levels of the network. As long as every
subgraph is considered (the number of subgraphs is exponential in|V |) it is possible to
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select a basis set for the independent constraints and to eliminate redundant constraints.
Efficient algorithms [16, 18] are available for performing this counting by using Laman’s
theorem recursively, and thus it is possible to test for generic rigidity in the plane.

Intuitive as constraint counting may seem, this approach generally fails in higher
dimensions! The double banana graph in figure 1(d) is the infamous counterexample [23, 25]
for why a generalized version of Laman’s theorem fails in three dimensions. There are no
subgraphs having more than 3|V ′|−6 edges connecting|V ′| vertices. Accordingly, the edges
are well distributed among the vertices and one would be lead to the wrong conclusion that
this graph is rigid. Nevertheless, applying constraint counting to all combinations of sites
(i.e. all subgraphs) within a generic network serves as a lower bound for the number of
floppy modes within any dimension. The combinatorial algorithm of Franzblau [28, 30] is
constructed along these lines for giving a good lower bound on the number of floppy modes
for generic bond-bending networks in three dimensions.

3. Generalization of Laman’s theorem

It is well known [22, 23, 25] that the ‘if’ part of Laman’s theorem generalizes to all
dimensions for a general graphG(E, V ) simply by replacing the maximum number of edges
that can be found in a subgraph withd|V ′| − d(d + 1)/2 for |V ′| > d and |V ′|(|V ′| − 1)/2
otherwise. However, the ‘only if’ part generally fails in three and higher dimensions as
demonstrated by the double banana graph [25] in figure 1(d). The double banana graph
is floppy with one internal motion about the implied-hinge joint between vertices(1, 5).
This means that there is a redundant bond somewhere. Note that the left banana, separately
shown in figure 1(c), forms a rigid cluster with an implied edge between vertices(1, 5).
When the right banana is joined to vertices(1, 5), the implied edge (now an implied-hinge
joint) causes one edge in the right banana to become redundant. Evidently the implied-hinge
joint is acting like an ordinary edge, but ismissedduring a straight counting of constraints.

The generalized version of theorem 2.10 in three dimensionsdoes workfor the double
banana of figure 1(d) if an additional edge is placed either between vertices(1, 5) or (4, 8)
for example. In the first case, the rigidity properties is unchanged but now the distribution
of edges are correctly counted, yielding two redundant edges. This is because an edge
between vertices(1, 5) corresponds to aphysical constraintthat can be tangibly counted.
In the latter case, there is only one rigid cluster because the added edge locks the two
bananas together. One redundant edge is correctly counted.

Although connectivity between a set of vertices that are mutually rigid is a necessary
condition in graphG, within individual rigid clusters connectivity isnot required. As
the ‘triple banana’ graph of figure 2 illustrates, there are three rigid clusters formed by
face sharing tetrahedra (the bananas) and a rigid triangle with vertices{1, 2, 3} that are not
connected as a subgraph. The vertices{1, 2, 3} are mutually rigid because the implied-hinge
joints between vertex pairs(1, 2), (1, 3) and(2, 3) act as independent constraints. Therefore
it is possible to have a mutually rigid set of vertices that are not contiguously connected
to one another! In general, when constraint counting is applied on all levels of a network,
the noncontiguous rigid clusters will be missed. Note that this additional nonlocal feature
of rigidity does not occur in two dimensions.

As the examples above indicate, implied-hinge joints give rise to various kinds ofbanana
structuresthat can cause errors in constraint counting or lead to rigid clusters that are not
contiguously connected. It will be argued that only implied-hinge joints are responsible
for the difficulties encountered in characterizing three-dimensional generic rigidity with
constraint counting. This may be surprising because after all: what type of simplification
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Figure 2. A triple banana graph in three dimensions consisting of three implied-hinge joints
between vertices(1, 2), (1, 3) and(2, 3). This graph decomposes into four rigid clusters.

can result if edges are placed between pairs of vertices that form implied-hinge joints? To
answer this, consider the following thought experiment.

(i) Decompose (the process of identification) the network,G, into its unique set of rigid
clusters. Note that all vertices and all edges will belong to one or more rigid cluster.

(ii) Place an edge between all pairs of vertices that form an implied-hinge joint—thereby
creating a regular hinge joint. Note that these edges are redundant, as their presence is not
required.

(iii) For each hinge joint between a pair of vertices shared byn rigid clusters, place
n − 1 additional edges between the same pair of vertices. Note that all these additional
edges are also redundant.

(iv) Separate the rigid clusters from one another, with the assignment of an edge
(representing a hinge joint) to each rigid cluster that shares a hinge joint from the set
of duplicated edges created in step (iii).

(v) Consider each subgraph separately (formerly a rigid cluster in the network), and
choose one that is no longer rigid as an isolated entity. This subgraph,Gψ , will have
ψ > 0 internal degrees of freedom that must have been constrained by the remaining part
of the network.

(vi) Since all implied-hinge joints acting on subgraphGψ have been accounted for and
preserved, the requiredψ implied constraints that makeGψ rigid (as a subgraph inG) must
be derived from a mechanism that couplesGψ to the remaining part ofG.

(vii) For the mechanism to coupleGψ to the rest of the network, it must consist of some
vertices,Vout belonging to rigid clusters inG other than those inGψ , as well as vertices,
Vin, that belong toGψ .

(viii) With the ψ implied constraints imposed by the mechanism couplingGψ to the
rest of the network,Gψ becomes a rigid subgraph inG. However, this means that all
relative motion between the vertices in the mechanism is locked, which is a consequence
of Newton’s third law.
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(ix) As the mechanism locks, other vertices outside ofGψ become rigid with respect to
Gψ itself, which is inconsistent with the rigid cluster decomposition. Therefore, in applying
step (v), all the isolated subgraphs are indeed rigid [31].

As ascertained from the thought experiment an observation can be made as follows.

Observation 3.1.Implied constraints acting on a rigid cluster within a network can only be
imposed by connecting rigid clusters through implied-hinge joints.

Note that implied-hinge joints act as independent constraints upon all but one of the rigid
clusters that share it, making constraint counting difficult. Without these implied-hinge
joints the rigid clusters have a much simpler nature.

Theorem 3.2.Each rigid cluster,G′(V ′, E′), is a connected subgraph withinG(V,E) if no
implied-hinge joint exists inG.

Proof. Divide the set of mutually rigid vertices inV ′ into two subsets such thatV ′ = V ′a∪V ′b
andV ′a ∩ V ′b = { }. A rigid cluster is disconnected when only implied edges join vertices
from setV ′a to the vertices in setV ′b. Without support of graphG the rigid cluster cannot
exist. Therefore, other vertices and edges not within the rigid cluster are responsible for
making some pairs of vertices(v′a, v

′
b) mutually rigid. From observation 3.1, a disconnected

rigid cluster will share at least one implied edge between vertices(v′a, v
′
b) with another rigid

cluster, forming an implied-hinge joint. �

The converse of theorem 3.2 is not true. Having only connected rigid clusters inG does
not prevent the existence of implied-hinge joints. This can be seen in the double banana
graph of figure 1(d).

Proposition 3.3.The edges of a graph,G(V,E), having no implied-hinge joints, are
independent in three dimensions if and only if no subgraph,G′(V ′, E′), has more than
3|V ′| − 6 edges for|V ′| > 2 or more than|V ′|(|V ′| − 1)/2 edges for|V ′| 6 2.

Proof. All that is needed to show is that if a redundant edge,e, between a pair of vertices,
(v′1, v

′
2) exist, then the stated condition on the number of edges is necessarily violated. If

edgee is redundant, then the pair of vertices(v′1, v
′
2) are mutually rigid without edgee.

Therefore this pair of vertices belong to a rigid cluster. Select this rigid cluster as a test
subgraph within graphG. Since it is rigid, it must have 3|V ′|−6 independent constraints for
|V ′| > 2 or |V ′|(|V ′| − 1)/2 independent constraints otherwise. Since it is given that there
are no implied-hinge joints, it follows that every independent constraint required to keep
the vertices inV ′ mutually rigid must be an edge, not an implied edge. Thus, by adding
a redundant edgee, the number of edges must exceed the minimum required number of
edges. �

According to proposition 3.3, if a network has no implied-hinge joint, then constraint
counting on all levels will completely characterize generic rigidity. This result may not
seem useful because one does not know whether an implied-hinge joint does not exist in a
given graph until after a rigid cluster decomposition is made. Nevertheless, proposition 3.3
can be directly used to construct a simple recursive algorithm for testing generic rigidity in
any network that has no implied-hinge joint and where all its hinge joints can be selected as
part of an independent basis set of constraints. More importantly, these conditions are not
overly restrictive for many physical problems of interest. In the next section it will be shown
that bond-bending networks (truss frameworks) fit all requirements, making proposition 3.3
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of practical importance in applications for determining rigidity in covalent glass networks
and macromolecules.

Note that the above logic can be used to prove Laman’s theorem in one and two
dimensions, where the elementary floppy units do not include implied-hinge joints. More
specificly, rigid clusters in one and two dimensions cannot be externally acted upon by
implied constraints brought in by connected rigid clusters. However, in this broader context
the above thought experiment is known to fail in dimensions greater than three, where it
is possible to construct a mechanism that creates an implied edge between a single pair of
vertices [25, 31] without having a subdimensional interface between two rigid clusters.

4. Generic rigidity in bond-bending networks

Generic rigidity in three-dimensional bond-bending networks corresponds to graph rigidity
within the restricted class of squared graphs. A graph to thenth power is defined [1] as
follows.

Definition 4.1.For any given graphG, thenth power ofG, denoted asGn, hasV (Gn) =
V (G) with v1, v2 adjacent inGn whenever the distanced(v1, v2) 6 n in G, where the
distance between two vertices is the shortest path between them.

Let graphG = G(V,E1), having |V | vertices and|E1| edges, define the underlying
description of the bond-bending network. The edges of setE1 correspond to central-force
constraints. Let:

G2(V ,E) = G2(V ,E
∗
1, E2) = G2(V ,E1) (2)

whereE2 is an inducedset of edges joining all next-nearest neighbour vertices present in
the underlying graphG, E = E1 ∪ E2 andE∗1 contains every edge in setE1 that does not
overlap with an induced edge from setE2 such thatE∗1 ∩ E2 = { }.

As seen in figure 3(a) each edge inE2 corresponds to a bending-force constraint that
is induced by a pair of edges inE1 that are incident to the same vertex. There can be
overlap between the edges in setsE1 andE2. This situation occurs in the example graph of
figure 3(b) for edges joining the vertex pairs(3, 4), (3, 5) and(4, 5). When more than one
edge is placed between a given pair of vertices the degenerate set together acts as a single
edge, which may be independent or redundant. The edges making up setE∗1 for this graph
are between the vertices(1, 2), (1, 6) (2, 3) and(5, 6).

When the graphG consist of disconnected subgraphs, then graphG2 will have the same
set of disconnected subgraphs since the edges ofE2 are induced between pairs of vertices
that are already connected. Graph rigidity is tested separately for each connected subgraph
in G, and thusG2. The graph rigidity of connected subgraphs consisting of isolated vertices
or single edges is trivial. Therefore let us work with an underlying graphG(V,E1) that is
connected and has|V | > 3.

The first important characteristic of graphG2 is that it is made up of edge sharing
triangles. Evidently, the smallest rigid cluster possible is a complete graph of three vertices
forming a triangle. Note, however, that all graphs consisting of edge sharing triangles do
not generally define squared graphs. For example, the graph in figure 1(b) is made up of
four edge sharing triangles, but it is not a squared graph. The distinction between edges as
either an element of the setsE1 or E2 imposes additional constraints on the connectivity
of aG2 graph. Note that vertices inG2 are connected via edges fromE1, and all induced
triangles have two edges from setE1 and one edge from setE2. As the following theorems
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Figure 3. Four examples of squared graphs embedded in three dimensions. Full (broken) lines
denote the underlying (induced) edges. (a) Two edge sharing triangles forms a hinge joint
having a free dihedral angle. (b) A rigid cluster. (c) Four rigid clusters. (d) Two rigid clusters.

show, these additional constraints on the connectivity of a squared graph are sufficient to
eliminate the existence of pivot joints and implied-hinge joints.

Theorem 4.2.No pivot joints exist in a squared graphG2 = G2.

Proof. For a pivot joint to exist, there must be at least two rigid clusters that share only
one vertex,v. However, aG2 graph consist of edge sharing triangles so that at least two
vertices are shared by any two rigid clusters having vertexv in common. �

It can be seen in figure 3(c) why a vertex cannot be a pivot joint in aG2 graph. The
three triangles having vertices{1, 2, 5}, {3, 4, 5} and {5, 6, 7} all share vertex 5. However,
the induced edges between vertices(2, 3), (2, 6) and (3, 6) eliminates vertex 5 as a pivot
joint and instead forms a rigid cluster with vertices{2, 3, 5, 6}. The basic floppy element that
survives is a hinge joint occurring between the vertices(2, 5), (3, 5) and (5, 6). Although
hinge joints can exist in aG2 graph, it will now be shown that implied-hinge joints cannot.

Theorem 4.3.No implied-hinge joints exist in a squared graphG2 = G2.

Proof. Assume an implied-hinge joint incident to vertices(v1, v2) exist inG2. SinceG2

consist of edge sharing triangles, each pair of associated rigid clusters are floppy with respect
to one another via two hinge joints; incident to verticesv1 andv2. Therefore, each pair of
rigid clusters have at least three distinct vertices in common. By observation 2.4 each rigid
cluster pair are mutually rigid, leading to a contradiction. �

The only floppy element that survives in a bond-bending network is the hinge joint
between rigid clusters, and they also have certain restricted characteristics as follows.
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Lemma 4.4.In a squared graph,G2(V ,E
∗
1, E2) = G2(V ,E1), the vertices within a rigid

cluster are connected by the underlying edges in setE1.

Proof. By theorems 4.3 and 3.2 all the vertices in a rigid cluster are connected. Induced
edges inE2 only form between pairs of vertices already connected by edges inE1. �

Lemma 4.5.In a squared graph,G2(V ,E
∗
1, E2) = G2(V ,E1), the induced edgesE2 cannot

form a hinge joint.

Proof. Choose any induced edge,e, of setE2 and either one of its incident vertices,v. A
hinge joint forms when two or more rigid clusters share edgee. By lemma 4.4 the vertex
v of edgee has at least one incident edge from setE1 for each rigid cluster. Induced edges
triangulate all underlying edges incident to vertexv, and thereby prohibit edgee to be a
hinge joint. �

Corollary 4.6. In a squared graph,G2(V ,E
∗
1, E2) = G2(V ,E1), the induced edgesE2

belong to only one rigid cluster.

Proof. For an edge to belong to more than one rigid cluster it must be a hinge joint. By
lemma 4.5 any edge in setE2 cannot be a hinge joint. �

As a result of lemma 4.5 only edges in setE∗1 may act as a hinge joint. These hinge
joints also have certain restrictions.

Lemma 4.7.In a squared graph,G2(V ,E
∗
1, E2) = G2(V ,E1), the edgesE∗1 can at most

belong to two rigid clusters.

Proof. Assume edge,e, of setE∗1 between vertices(v1, v2) is a hinge joint. All edges
incident to vertexv1 from setE1 are members of a single rigid cluster since their induced
edges form a complete subgraph. Likewise the underlying edges from setE1 incident to
vertexv2 belong to a single rigid cluster. Therefore the edgee, having verticesv1 andv2

in common, can at most belong to two rigid clusters. �

In figure 3(d) it is seen that the underlying edge between the pair of vertices(2, 4)
forms a hinge joint. All the underlying edges incident to vertex 2 and 4 form the rigid
cluster with vertices{1, 2, 4} and{2, 3, 4, 5} respectively. Therefore the hinge joint belongs
to these two rigid clusters. Adding more underlying edges incident to vertex 2 or 4 will
not increase the number of rigid clusters that share the hinge joint. A result of having each
hinge joint being at most two-fold degenerate places a restriction on the number of distinct
rigid clusters that any given vertex may belong.

Corollary 4.8. Within squared graphG2 = G2, any vertex that is of degreen in the
underlying graphG can belong to at mostn+ 1 rigid clusters.

Proof. Given a vertex,v, with n incident underlying edges from setE1. Vertexv belongs to
a rigid cluster containing all of its incident edges fromE1 plus by lemma 4.7, one additional
rigid cluster for each underlying hinge joint incident tov. At most there can ben hinge
joints. �
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A vertex v is said to ben-coordinated in graphG2 = G2 if it is of degreen in the
underlying graphG. As shown in figure 3(c), vertex 5 is 3-coordinated where all of its
incident underlying edges between vertices(2, 5), (3, 5) and (5, 6) are hinge joints. In
this case, the 3-coordinated vertex belongs to four rigid clusters consisting of the vertices
{2, 3, 5, 6}, {1, 2, 5}, {3, 4, 5} and{5, 6, 7}.

Many special properties of generic rigidity within a bond-bending network has been
derived thus far by using the local connectivity of a squared graph. In addition, a complete
combinatorial constraint counting characterization can be stated as follows.

Proposition 4.9.The edges of a squared graph,G2(V ,E) = G2(V ,E1), are independent in
three dimensions if and only if no subgraph,G′2(V

′, E′), has more than 3|V ′| −6 edges for
|V ′| > 2 or more than|V ′|(|V ′| − 1)/2 edges for|V ′| 6 2.

Proof. According to theorem 4.3, a squared graph has no implied-hinge joints. Therefore,
this result follows immediately from proposition 3.3. �

The main result of proposition 4.9 is that every constraint within any subgraph ofG2

is accountable by the presence of an edge, and the only way an edge can be redundant is if
a subgraph has more edges than the required number of constraints to make those vertices
mutually rigid. Consequently, the number of degrees of freedom or floppy modes,F , can be
related to the rigid cluster decomposition in the form of a sum rule. For completeness, this
sum rule is given for a general underlying graphG which may have disconnected subgraphs
with 1, 2 or more vertices.

Theorem 4.10.The number of independent degrees of freedom,F , in a generic squared
graphG2 = G2 is given by:

F = 3N −
N∑
n=3

[Cn(3n− 6)] − C2+H

whereN = |V | of graphG2, Cn is the number of rigid clusters havingn vertices andH is
the number of hinge joints.

Proof. Since there are no implied-hinge joints, every rigid cluster inG2 is connected,
and taken separately each has 3n − 6 independent edges forn > 3 vertices and one
independent edge forn = 2. For every pair of rigid clusters connected by a hinge joint
one independent edge is doubled counted. This is because at a given hinge joint between
the pair of vertices(v1, v2), the verticesv1 andv2 are independently mutually rigid within
each cluster. Therefore, one independent edge (taken from either rigid cluster) becomes
redundant as the two rigid clusters are joined atv1 andv2. �

4.1. The three-dimensional pebble game

By using proposition 4.9 recursively, a three-dimensionalpebble gamealgorithm has been
constructed in a similar fashion as the two-dimensionalpebble game[16]. One difference
is that three pebbles are assigned to each vertex rather than two. There is also an important
difference in regard to building the network up one edge at a time to obtain a maximal
independent edge set. A distinction is made between an edge,e ∈ E1, representing a central-
force bond to that of an induced edge,e ∈ E2, representing a bond-bending constraint. The
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edges of setE1 are free to be placed in any order. However, once a central-force edge is
placed, all its associated locally induced edges, from setE2, must be placed before the next
edge in setE1 is placed. The order in placing the set of locally induced edges does not
matter. This simple restrictionnearly conserves the connectivity properties to be that of a
squared graph throughout the building process. The preference of central-force edges over
bond-bending edges turns out to be sufficient for producing an exact constraint counting
algorithm.

Like the two-dimensional pebble gamealgorithm [14–16], thethree-dimensional pebble
game exactly counts the number of floppy modes and identifies all rigid clusters in a
bond-bending network. Thethree-dimensional pebble gamehas been implemented and
extensively tested on hundreds of thousands of networks, with a wide range of variety.
Networks containing up to 106 vertices have been considered. The maximum coordination
number for a given vertex has ranged from 3 to 10, using underlying topologies of the
diamond, simple cubic, body centred cubic, face centred cubic, honeycomb, square and
triangular lattices with random dilution in either the edges or vertices. Another type of
network topology was generated by randomly placing central-force edges between any pair
of vertices up to a given maximum coordination number, and then the edges or vertices are
randomly diluted.

Since thethree-dimensional pebble gamebuilds a given network up by adding edges
recursively, each network was built up ten times by placing one edge at a time indifferent
random order. The exact same results for the number of floppy modes and rigid cluster
decomposition were always obtained. Self-consistency checks against theorems 4.7 and
4.10 were successful on all the rigid cluster decomposition results. In addition, numerical
methods involving determining a rank of a matrix (using generic coordinates) have been
used to calculate the number of floppy modes. The rigid cluster decomposition was also
obtained using an exact numerical method as suggested by Franzblau [32] which relies on
finding the rank of a matrix to identify individual redundant bonds. Comparison between
the numerical methods and thethree-dimensional pebble gamewas made on network sizes
containing up to 400 vertices. The number of floppy modes and the entire rigid cluster
decomposition from both methods were always found to be identical.

5. Discussion

Propositions 4.9 and 3.3 dealing with bar-joint networks, have an analogous similarity with
the theorems by Tay [2] that deal with body-bar networks using multigraphs, where each
node is regarded as a rigid body. For generically placed bars between rigid bodies, it is
possible to completely characterize rigidity [2, 25] by combinatorial constraint counting on
all levels of subgraphs. In particular, if two neighbouring rigid bodies share five bars, then
this situation is equivalent to having a generic screw axis between the two rigid bodies.
Whiteley [25] proposed making a ‘molecular model’ such that all atoms are considered
to be rigid bodies withsix degrees of freedom with a screw axis between neighbouring
pairs of atoms. This molecular model has beenconjectured† to be equivalent to the three-
dimensional bond-bending network.

The common element between the three-dimensional bar-joint frameworks without
implied-hinge joints and a body-bar network is that generic rigidity is completely determined
by a combinatorial constraint counting characterization. Therefore it should not be surprising

† There is a technical problem in that algebraic dependences are introduced when shrinking a solid sphere to a
point.
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Figure 4. Example of the exact mapping between the bar-joint and body-bar representations
of a three-dimensional bond-bending network. (a) A bar-joint framework including an isolated
edge and vertex. (b) The corresponding body-bar network using multigraphs. Each full circle
is a node in the multigraph corresponding to a local rigid cluster (shown in white) from the
bar-joint framework. A node containing one, two or (more than two) vertices represents a rigid
object having three, five or six free degrees of freedom respectively. All connected rigid objects
share five generic bars; representing a screw axis.

to find an exact mapping between the two formulations; depending on how the elementary
degrees of freedom and constraints are grouped for counting. However, there is a real
physical difference between assigning an atom six or three degrees of freedom that goes
beyond a regrouping of the various components in a network. Moukarzel [18] has shown
that there is an exact mapping between the bar-joint and body-bar formulation in two
dimensions provided sub-dimensional rigid bodies are included. Likewise, an exact mapping
exist between a bar-joint and body-bar representation of a bond-bending network in three
dimensions.

The mapping is derived here by construction. Each vertex of a squared graph belongs
to a local rigid cluster consisting of itself and its nearest neighbours. An isolated vertex
is considered a rigid sub-dimensional object of three degrees of freedom. A 1-coordinated
vertex forms a sub-dimensional rigid dimer having five degrees of freedom. All othern-
coordinated vertices forn > 2, belong to a rigid body having six degrees of freedom. From
theorems 4.5–4.7 it follows that the only floppy motion between neighbouring rigid clusters
is through a dihedral angle with a central-force bond acting as a hinge. The relative motion
about a hinge-joint between two neighbouringlocal rigid clusters defines a generic screw
axis. Therefore, the mapping consist of partitioning a squared graph into locally defined
rigid bodies associated with each vertex while preserving the underlying graph,G(V,E1).
Each vertex,v ∈ V , is transformed into a node representing a rigid body of either three,
five or six degrees of freedom. Each edge,e ∈ E1, is transformed into five generic bars
placed between the corresponding nodes.

An example of this mapping is shown in figure 4. The nature of each node in figure 4(b)
is determined by thelocal molecular rigid clusterabout each corresponding vertex in the
bond-bending network of figure 4(a). These locally defined rigid clusters are shown within
each rigid body of the body-bar network. All rigid bodies representing a molecular rigid
cluster containing one, two or more than two vertices have three, five or six degrees of
freedom respectively. Consequently, an isolated atom maps back into an atom with three
degrees of freedom. A dimer maps into two rigid objects each having five degrees of
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freedom with five independent generic bars between them, and this gives back a single rigid
dimer having five degrees of freedom. In general, all dimers, associated with 1-coordinated
vertices will become isostaticly rigid [21] to their neighbouring rigid body.

Short of a general graph-theoretic characterization of generic rigidity, it would be
insightful to develop combinatorial algorithms that test for generic rigidity on bar-joint
networks outside the class of squared graphs, but have no implied-hinge joints. To go
beyond networks lacking banana structures, note that proposition 3.3 suggests that if one can
a priori identify implied-hinge joints, then combinatorial constraint counting will completely
characterize generic rigidity for a general graph in three dimensions. This idea falls along
the lines of the Dress conjecture [23]. Taking a pragmatic approach of gradually generalizing
the network type could ultimately lead to a complete characterization of generic rigidity for
any general graphG in three dimensions.

6. Conclusion

A major conceptual advance in the fundamental understanding of mechanical stability in
network glasses and macromolecules has been made by bridging the concepts of graph
rigidity with material science [14]. Numerous glass-like materials are well modelled as a
simple bar-joint structure which is generic in nature. Only the connectivity of the network
becomes important in this setting. The surprise is that networks lacking any underlying
symmetry are in principle easier to deal with. In practice, the advantage of applying concepts
from graph rigidity goes only as far as whether an efficient combinatorial algorithm can be
implemented.

It has been demonstrated that Laman’s theorem generalizes to three-dimensional bar-
joint networks that do not contain implied-hinge joints, allowing constraint counting on all
levels of subgraphs to be sufficient to characterize generic rigidity. The approach taken here
is more physically intuitive than using projective geometry [2] or matroid theory [23, 25].
The new results that have been put forward offer an avenue for developing algorithms
that test for generic rigidity on bar-joint networks directly. In particular, it was shown
that implied-hinge joints cannot exist within generic bond-bending networks, which enabled
a three-dimensional pebble gamealgorithm, similar to the two-dimensionalpebble game
algorithm [16], to be constructed. It is now possible to count the exact number of floppy
modes, determine the rigid cluster decomposition and to identify overconstrained regions
within a three-dimensional generic bond-bending network. Moreover, these bond-bending
networks are relevant to applications in many covalent network glasses and macromolecules.
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